
J
H
E
P
0
2
(
2
0
0
7
)
0
5
6

Published by Institute of Physics Publishing for SISSA

Received: October 16, 2006

Accepted: December 11, 2006

Published: February 20, 2007

QCD with light Wilson quarks on fine lattices (I): first

experiences and physics results

Luigi Del Debbio,a Leonardo Giusti,b∗ Martin Lüscher,b Roberto Petronzioc and
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lations of lattice QCD with Wilson quarks to be performed at significantly smaller quark

masses than was possible before. Here we report on simulations of two-flavour QCD at

sea-quark masses from slightly above to approximately 1/4 of the strange-quark mass, on

lattices with up to 64 × 323 points and spacings from 0.05 to 0.08 fm. Physical sea-quark

effects are clearly seen on these lattices, while the lattice effects appear to be quite small,

even without O(a) improvement. A striking result is that the dependence of the pion mass

on the sea-quark mass is accurately described by leading-order chiral perturbation theory

up to meson masses of about 500 MeV.
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1. Introduction

Many different formulations of lattice QCD are currently in use. The aim to reduce the

lattice effects and to preserve chiral symmetry as much as possible has been the principal

motivation for the introduction of increasingly complicated lattice actions. Highly improved

actions are not obviously the best choice in practice, however, since they tend to slow down

the numerical simulations by a large factor. Moreover, the conceptual transparency of the

lattice theory (otherwise one of its greatest assets) may be compromised in extreme cases.

The philosophy advocated here is to keep the theory simple at the fundamental level

(thus sticking to Wilson’s formulation [1] and its close relatives) and to develop adapted

computational strategies that allow simulations of large lattices with small spacings to be

performed efficiently. Extrapolations to the continuum limit will then still be required, but

the hope is that, in many cases of interest, the lattice effects will already be small at the

accessible lattice spacings.

For many years, the Wilson theory had the reputation of being difficult to simulate

at light-quark masses significantly smaller than half the strange-quark mass. The situa-

tion has now changed completely, following the development of the DD-HMC simulation

algorithm [2]–[4] and of a fine-tuned version of the Hasenbusch-accelerated HMC algorithm

[5]–[8], both being much faster than the algorithms used thus far (for related earlier studies

of unquenched lattice QCD, see refs. [9]–[14], for example). The success of these algorithms

is partly also due to the fact, discovered later [15], that the Wilson–Dirac operator has a

safe spectral gap in the large-volume regime of QCD, even though chiral symmetry is not

exact in the Wilson theory.
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Run Lattice β csw κ Ncfg

A1 32 × 243 5.6 0 0.15750 64

A2 0.15800 109

A3 0.15825 100

B1 64 × 323 5.8 0 0.15410 100

B2 0.15440 101

B3 0.15455 104

B4 0.15462 102

D1 48 × 243 5.3 1.90952 0.13550 104

D2 0.13590 171

D3 0.13610 168

D4 0.13620 168

D5 0.13625 169

Table 1: Simulations included in the physics analysis.

In this paper we report on extensive simulations of two-flavour QCD in a range of

lattice spacings, lattice sizes and quark masses not explored before. Apart from sect. 2,

where the simulations are briefly described, the emphasis is put on the main physics results.

Further details of the simulations, data tables, etc., will be published in a forthcoming more

technical paper.

2. Simulation table

As already indicated, the lattice theory is set up following Wilson [1], with a doublet of

sea quarks of equal mass. In this theory, the sea quarks represent the up and down quarks,

while the strange quark will be added later at the level of a valence quark, i.e. without the

associated quark determinant.

Three series of lattices were simulated, labelled A, B and D (see table 1).1 In the

D series, the Sheikholeslami–Wohlert term [16] was included in the quark action with

coefficient csw set to the value determined by the ALPHA collaboration [18], thus ensuring

non-perturbative on-shell O(a) improvement. The size of the representative ensemble of

gauge-field configurations generated in each case is given in the last column of table 1.

In physical units, the lattice spacing on the A, B and D lattices is estimated to be

0.0717(15), 0.0521(7) and 0.0784(10) fm respectively (see section 4). The three series

of simulations cover a similar range of sea-quark masses, from values slightly above the

strange-quark mass ms down to values close to ms/4.

All simulations were performed using the DD-HMC algorithm [4], which combines

domain decomposition ideas with the Hybrid-Monte-Carlo algorithm [19] (hence the name

DD-HMC). As explained in refs. [4, 21], the speed of the algorithm also very much depends

1Our notation and normalization conventions coincide with those of ref. [17]. As usual we quote the

values of β = 6/g2
0 and κ = 8 + 2m0 instead of the bare coupling g0 and sea-quark mass m0.
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on the use of the Sexton–Weingarten multiple-time integration scheme [20]. In practice, a

relevant performance figure is the number Nop of floating-point operations required for the

generation of an ensemble of 100 statistically independent field configurations on a 2L×L3

lattice at a specified lattice spacing and sea-quark mass. A formula that fits our experience

with the DD-HMC algorithm well is

Nop = k

(

20 MeV

m

)(

L

3 fm

)5 (

0.1 fm

a

)6

Tflops×year, (2.1)

where m denotes the running sea-quark mass in the MS scheme at renormalization scale

µ = 2 GeV and k ' 0.05 if the O(a)-improved theory is simulated (k ' 0.03 without

improvement).

In 2001, at the annual conference on lattice field theory in Berlin, a similar formula was

presented by Ukawa [22], summarizing the experience made by the CP–PACS and JLQCD

collaborations with the algorithms available at the time. With respect to that formula, the

scaling exponent of the quark mass in eq. (2.1) is reduced from 3 to 1, the exponent of the

lattice spacing from 7 to 6, and the constant k is roughly 100 times smaller.

Apart from the operations count, the suitability of the simulation algorithm for parallel

processing is a key issue if large lattices are to be simulated. Domain decomposition

methods tend to perform well from this point of view, and one of the design goals of the

DD-HMC algorithm was in fact to keep the communication overhead small [3, 4]. Special-

purpose computers are then not required and most simulations (including the B series)

were actually performed on commodity PC clusters with up to 64 double-processor nodes.2

3. Physical sea-quark effects

Once the sea quarks are included in the simulations, an obvious question is whether their

presence has a visible effect on the computed quantities. Correlation functions of local fields

depend on the sea-quark content of the theory in various ways. The flavoured pseudo-scalar

densities, for example, can only couple to multi-meson states through the creation of virtual

quark pairs (see figure 1). Higher-states contributions to the correlation functions of these

fields are therefore expected to increase when the sea-quark mass is lowered (thus moving

away from quenched QCD).

Indications for the presence of multi-meson intermediate states in some two-point cor-

relation functions were already found some time ago by the UKQCD collaboration [23]. We

now have data at smaller quark masses, where the effect is more pronounced and where a

significant dependence on the sea-quark mass is seen in both the pseudo-scalar and vector

channels.

For illustration we introduce two valence quarks, labelled r and s, and consider the

two-point correlation function

C(t) = −

∫

x0=t

d3x 〈(r̄γ5s) (x) (s̄γ5r) (0)〉 (3.1)

2The program that was used for the simulations of the O(a)-improved theory (the D series) can be

downloaded from http://cern.ch/luscher/DD-HMC.
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Figure 1: Quark-line diagrams contributing to the two-point correlation function (3.1). In the

second diagram, two pairs of sea-quarks are created from the vacuum and bind into a pair of

pseudo-scalar mesons.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
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630 m̂val = 43 MeV
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0.6 0.8 1.0 1.2 1.4 1.6 1.8
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Figure 2: Simulation results (data points) for the effective pseudo-scalar mass Meff(t) in MeV as

a function of the time t in fm (runs D2 and D4). The average valence-quark masses m̂val and the

meson masses M (grey bands) are nearly the same in the two cases, while the sea-quark mass msea

changes by a factor of 2 (quoted quark masses are bare current-quark masses).

of the corresponding flavoured pseudo-scalar density at zero spatial momentum (for simplic-

ity we use a continuum notation in this section). In finite volume, C(t) may be expanded

in a spectral series

C(t) =
t→∞

c0e
−Mt + c1e

−M ′t + · · · , (3.2)

where M denotes the mass of the associated pseudo-scalar meson and M ′ the energy of a

three-meson state with all particles at rest.

Plots of the effective mass

Meff(t) = −
d

dt
ln C(t) = M + c e−(M ′−M)t + · · · (3.3)

now show that the higher-states contributions are not small in general. Moreover, as is

evident from figure 2, they tend to grow when the sea quarks become lighter. In the cases

shown in the figure, the energy M ′ of the lowest three-meson intermediate state is expected

to be approximately equal to M + 2Mπ, where Mπ denotes the mass of the pseudo-scalar

mesons made of the sea quarks. The two-state formula (3.3) actually fits the data quite

well if this expression is assumed and if Mπ is determined from the sea-quark pseudo-scalar

correlation function (solid lines in figure 2).

While the observed enhancement of higher-states contributions is in line with qual-

itative theoretical expectations, their presence also tends to complicate the analysis of

the simulation data. In particular, at small sea-quark masses, the computation of hadron

masses may require accurate data at larger time separations than was the case in quenched

– 4 –
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Figure 3: On each lattice, the masses of the K and the K∗ were computed at 4 or 5 values of the

bare strange-quark mass. The results obtained on the D lattices are plotted here for illustration

(data points). At the lighter sea-quark masses, the point where MK/MK∗ = 0.554 (dotted line) is

found by a quadratic interpolation in the strange-quark mass of the nearest data points. The solid

line shows the interpolation in the case of the lattice D5.

QCD. Multi-mass fits and variational methods can be helpful at this point, although the

associated systematic uncertainties must then be balanced against the possibly lower sta-

tistical errors.

4. Setting the scale

The choice of a physical reference scale is an important step in the analysis of the simulation

data. Results obtained on different lattices can then be expressed in units of this scale and

thus be compared with one another.

Following ref. [17], we adopt a mass-independent scheme where the lattice spacing

in physical units is the same on all lattices at a given bare coupling. Different choices

of the reference scale are possible, none of which appears to be free of some practical or

conceptual shortcoming. Here we add a valence strange quark to the theory and determine

the scale through the pion mass and the masses of the pseudo-scalar and vector mesons

that are made of a strange antiquark and a sea quark (we refer to these as the K and the

K∗). More precisely, we adjust the quark masses so that the ratios MK/MK∗ and Mπ/MK

assume some prescribed values and then take MK as the reference scale.

Since we wish to set the scale in a physically sensible way, we require the ratio MK/MK∗

to be equal to its physical value of 0.554. This condition fixes the strange-quark mass ms

at any given coupling and sea-quark mass m (see figure 3). Ideally we would like the

latter to be such that Mπ/MK assumes its physical value too, but this would require a

long extrapolation in the sea-quark mass and, moreover, would be a point where the K∗

is unstable (i.e. the extrapolation would have to go through a kinematical threshold).
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Lattice series κref κs,ref aMK,ref a[fm]

A 0.15822(3) 0.15769(4) 0.180(4) 0.0717(15)

B 0.154561(12) 0.154257(10) 0.1310(17) 0.0521(7)

D 0.136207(7) 0.135912(13) 0.197(3) 0.0784(10)

Table 2: Determination of the lattice spacing at the quark masses where MK/MK∗ = 0.554 and

Mπ/MK = 0.85.

We now note, however, that once ms is fixed, the reference scale in lattice units, aMK ,

appears to be weakly dependent on m, particularly so at small m (see figure 3). The reason

for this behaviour (which is seen on all series of lattices) could be that both MK and MK∗

are functions of m+ms rather than of m and ms separately, up to corrections proportional

to the squares of the masses. In any case, the observation suggests the reference scale to be

defined at the point where, say, Mπ/MK = 0.85, which is within the available data range.

This convention, although somewhat unphysical, is entirely satisfactory for the purpose of

comparing results from different lattices.

The results for the reference scale obtained in this way are summarized in table 2. In

order to avoid any confusions, we mark all quantities evaluated at the reference point with

a subscript “ref”. The sea-quark and strange-quark hopping parameters at the reference

point, for example, are denoted by κref and κs,ref . Setting MK,ref = 495 MeV, this leads

to the lattice spacings quoted in the last column of the table, while for the pion masses at

the smallest sea-quark masses on the A, B and D series of lattices we obtain 403, 381 and

377 MeV respectively.

The lattice spacings calculated here are significantly smaller than those previously

published by us in a conference report [21], where the Sommer radius [24] was used as

reference scale. Larger lattice spacings are also obtained if the scale is set by the K and

K∗ masses, similarly to what was done here, but at larger sea-quark masses (see figure 3).

As a result of the new determination of the lattice spacings, our estimates of the pion

masses in MeV are pushed to higher values than those quoted in ref. [21]. Moreover, we

decided to discard the simulation at the lightest quark mass reported there, because the

lattice turned out to be too small for that mass.

All this illustrates the fact that at present the assignment of physical units remains

somewhat ambiguous. For a definitive solution of the problem, simulations at smaller quark

masses will probably be required, and the scale setting may eventually have to be based on

the properties of the stable hadrons (the pion and the nucleon in the two-flavour theory).

5. Quark-mass dependence of Mπ and Fπ

The bare quark masses that appear in the lattice action of the Wilson theory require a

power-divergent additive renormalization. This complication can be bypassed by extracting

the quark masses from the PCAC relation (see ref. [17], for example; in the improved

theory, we used the non-perturbatively improved axial current [25]). Moreover, ratios of
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Figure 4: Dependence of the square of the pion mass Mπ on the sea-quark mass m. The solid

curve is a quadratic least-squares fit (with constant term) of all data points, and the plot on the

right is a blowup of the region enclosed by the little box.

these masses do not need to be renormalized since the multiplicative renormalization factor

cancels.

In figure 4 the ratio (Mπ/MK,ref)
2 is plotted as a function of the corresponding ratio of

quark masses. If there were no systematic effects, all data points shown in this figure would

have to lie on a single curve, within statistical errors, representing the mass dependence

of (Mπ/MK,ref)
2 in the continuum limit. Note that the statistical errors of the points are

uncorrelated, except for the correlations that are introduced through the normalization

factors. The quality of the empirical fit (solid line) then suggests that no statistically

significant systematic effects are seen in this plot.

Another rather striking outcome is that M2
π is a nearly linear function of the sea-

quark mass m in the range covered by the data. There is a visible curvature towards the

larger masses in figure 4, but the coefficient of the quadratic term in the empirical fit,

y = −0.03(3) + 1.03(5)x + 0.02(2)x2, is small. In the range Mπ/MK,ref ≤ 1.1, the data are

also well represented by a straight line through the origin.

The corresponding plot of the pion decay constant Fπ, given in units of the decay

constant FK,ref of the K meson at the reference point, is more difficult to interpret (see

figure 5). Apart from the fact that the statistical errors tend to be larger here, the results

of the D series of simulations appear to be significantly different from those of the A and B

series. There is no obvious curvature in either set of data points, and correlated straight-

line fits (solid lines) are found to be statistically consistent. Although the two lines are

visibly different, the fitted values of their slopes, 0.235(11) and 0.192(11), deviate from

each other by less than 3 times the combined statistical error. The statistical significance

of the effect is thus not overwhelming.

When discussing systematic errors, an important point to note is that the axial-current

renormalization constant ZA cancels in the ratio of decay constants plotted in figure 5.
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Figure 5: Dependence of the pion decay constant Fπ on the sea-quark mass m. The solid curves

are linear least-squares fits of the data points from the A and B lattices (upper line) and of the

points from the D lattices (lower line).

Moreover, the ratio is largely insensitive to the values of the improvement coefficients cA and

bA [17, 25] on which the axial current in the O(a) improved theory depends. Lattice effects

may still be significant, however, and we can also not exclude the presence of important

finite-volume effects. A more specific problem is that any variations in the normalization

factors FK,ref and mref+ms,ref propagate to the slopes of the lines in figure 5. The alignment

of the data points may therefore appear to be better or worse, depending on the statistical

fluctuations at the reference point and on its detailed specification.

The fact that the lines in figure 5 have nearly the same intercept in the chiral limit

is probably an accident. Both lines also practically pass through Fπ/FK,ref = 0.82 (the

experimental value of Fπ/FK) at Mπ/MK,ref = 0.28. However, as will be shown in the next

section, such extrapolations to smaller quark masses could be misleading.

6. Comparison with chiral perturbation theory

In two-flavour QCD with unbroken isospin symmetry, the chiral expansion of the pion mass

reads [26]

M2
π = M2 +

M4

32π2F 2
ln(M2/Λ2

3) + · · · , M2 ≡ 2Bm, (6.1)

where F , B and Λ3 are a priori unknown constants. A phenomenological analysis, taking

low-energy experimental data as input, suggests [26, 27]

F = 86.2 ± 0.5MeV, l̄3 ≡ ln(Λ2
3/M

2)

∣

∣

∣

∣

M=139.6MeV

= 2.9 ± 2.4, (6.2)

while B depends on the renormalization scheme for the quark mass and thus cannot be

determined from such data alone. The chiral expansion of the pion decay constant has the

– 8 –
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form [26]

Fπ = F −
M2

16π2F
ln(M2/Λ2

4) + · · · (6.3)

and the phenomenological discussion leads to the estimate [28]

l̄4 ≡ ln(Λ2
4/M

2)

∣

∣

∣

∣

M=139.6 MeV

= 4.4 ± 0.2 (6.4)

for the low-energy constant Λ4.

In principle the low-energy constants can be determined from lattice data without re-

course to phenomenological estimates. However, as will become clear shortly, the available

simulation data are insufficient for a solid analysis of this kind. While the situation in the

case of the pion mass is somewhat more favourable, our principal goal in the following will

be to find out whether the data are compatible with the expansions (6.1) and (6.3) for a

reasonable choice of the parameters.

We first need to rewrite the equations in a form where all dimensioned quantities are

expressed in units of the scales at the reference point. To this end, it is helpful to introduce

the abbreviations

x =
2m

mref + ms,ref
, C =

M2
K,ref

32π2F 2
K,ref

, (6.5)

and to define the scaled parameters

F̂ =
F

FK,ref
, B̂ =

mref + ms,ref

M2
K,ref

B, l̂n = ln(Λ2
n/M2

K,ref). (6.6)

The chiral expansions

M2
π

M2
K,ref

= B̂x + C
B̂2x2

F̂ 2
{ln(B̂x) − l̂3} + · · · , (6.7)

Fπ

FK,ref
= F̂ − 2C

B̂x

F̂
{ln(B̂x) − l̂4} + · · · , (6.8)

may now be directly compared with the simulation data (note that l̂n = l̄n − 2.53 if

MK,ref = 495 MeV is assumed).

The computation of the decay constant FK,ref , and thus of the constant C, involves

the renormalization constant ZA of the axial current. Recent estimates of the latter in

the two-flavour Wilson theory at the couplings of the A and B lattices are 0.77(2) and

0.78(2) [29], while in the case of the D series of lattices we may use the value 0.75(1)

determined by the ALPHA collaboration [7]. For the constant C we then find 0.068(4),

0.071(4) and 0.076(3) respectively. These figures are barely consistent with one another,

suggesting the presence of lattice or finite-volume effects, but it should also be noted that

the determination of ZA is not free of systematic ambiguities [29, 7].3

3The same comments apply in the case of FK,ref where we obtain 107(3), 105(3) and 101(2) MeV on the

A, B and D lattices (assuming MK,ref = 495 MeV as before). The fact that these results are all lower than

the decay constant FK = 113(1) MeV of the physical kaon may not be significant, because the two-flavour

theory neglects the effects of the strange sea quark.
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Figure 6: Fit of the quark-mass dependence of the square of the pion mass Mπ in the range

Mπ/MK,ref ≤ 1.1, using the one-loop formula (6.7) with C = 0.072 and F̂ = 0.70 (solid line).

The fit is a correlated least-squares fit of all data points in the specified range, with unconstrained

parameters B̂ and l̂3.

0.0 0.4 0.8 1.2 1.6

2m/(mref+ms, ref)

0.6
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1.0

1.2

1.4

Fπ/FK,ref

A2 − A3
B2 − B4
D2 − D5

Figure 7: Fit of the quark-mass dependence of the pion decay constant Fπ in the range

Mπ/MK,ref ≤ 1.1, using the one-loop formula (6.8) with C = 0.072 and B̂ = 1.106 (solid line).

The dashed line with its 1-sigma error margin (grey band) represents an alternative fit that in-

cludes a hypothetical two-loop term.

A very accurate determination of C is fortunately not needed for the chiral fits, because

C only appears at next-to-leading order in the chiral expansions. We thus set C = 0.072 and

simplify the fit procedure by substituting F̂ = 0.70 in eq. (6.7), which will turn out to be

an approximately correct value. In the range Mπ/MK,ref ≤ 1.1, the one-loop formula (6.7)
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then fits the data for the pion mass very well, the fit parameters being B̂ = 1.11(6)(3) and

l̂3 = 0.5(5)(1) (see figure 6; the second errors are estimates of the systematic uncertainty

arising from the inaccurately known values of C and F̂ ). We did not attempt to estimate the

effects of any higher-order terms in eq. (6.7) so that the quoted values of the fit parameters

should be taken as effective values, describing the data in the specified range of pion masses.

In the case of the pion decay constant, the comparison of the simulation data with

the chiral formula (6.8) is complicated by the scattering of the data points in figure 5,

which may partly be the result of systematic effects. However, since the points line up at

the smaller quark masses, we may attempt to fit these, setting C and B̂ to the previously

determined values and adjusting F̂ and l̂4 (see figure 7). The statistical quality of this fit

(solid line) turns out to be quite good, but the curvature of the fit function is not seen in

the data and the fit therefore appears to be somewhat artificial.

A more plausible fit (dashed line) can be obtained by including a hypothetical two-loop

term proportional to B̂2x2/F̂ 3 in the chiral expansion (6.8), with a coefficient C ′ = 0.046

that is not unreasonably large. The fit parameters F̂ and l̂4 change from 0.60(4) and 1.6(1)

to 0.73(3) and 0.73(8), respectively, when the two-loop term is added.

The discussion in this section shows that simulation data at significantly smaller quark

masses, with small systematic and statistical errors, will be required for a reliable determi-

nation of the parameters in the chiral lagrangian. It seems safe to conclude, however, that

our results in the range Mπ/MK,ref ≤ 1.1 are not incompatible with chiral perturbation

theory. In particular, the fact that M2
π is a nearly linear function of the quark mass m is

not in conflict with the presence of the chiral logarithm in eq. (6.7).

7. Concluding remarks

In the coming years, simulations of lattice QCD with Wilson quarks will no doubt rapidly

progress towards smaller quark masses and lattice spacings than are reported here. In

order to guarantee the stability of the simulations [15], but also to keep the finite-volume

effects under control, the constraints

MπL ≥ 3, L ≥ 2 fm, (7.1)

should be respected in these computations. On a given lattice, the bounds (7.1) set a

lower limit on the lattice spacings and pion masses that can be reached (see figure 8).

Simulations of the two-flavour theory may not be practical at all these points, but the cost

formula (2.1) is encouraging and suggests that simulations at a ≤ 0.08 fm and Mπ ≤ 300

MeV, for example, can be performed already with the computer resources available at

present. However, to be able to sort out the systematic errors, many lattices will have to

be simulated which may require a coordinated effort.

On the A, B and D series of lattices, the smallest values of MπL are 3.5, 3.2 and 3.6

respectively, while the spatial sizes L of the lattices are estimated to be 1.72, 1.67 and

1.88 fm, i.e. somewhat below the required minimum. Finite-volume effects may not be

totally negligible on these lattices and will need to be investigated, extending the studies

by Orth et al. [14] to smaller quark masses and lattice spacings. So far we did not include
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Figure 8: Range of lattice spacings a and pion masses Mπ defined by the bounds (7.1) on a 2L×L3

lattice as a function of the lattice size L/a (shaded area above the line labelled by the corresponding

value of L/a).

the nucleons in the physics analysis, because these are probably even more sensitive to

finite-volume effects than the mesons.

It may be somewhat surprising that no significant lattice effects were seen in figure 4,

even though O(a) counterterms were only included in the D series of simulations. The

weak dependence on the lattice spacing could be related to the fact, first noted by Sharpe

and Singleton [30], that the O(a) lattice effects amount to an additive quark-mass renor-

malization at leading order of chiral perturbation theory. Since the quark masses that

appear in the PCAC relation already include all additive renormalizations, it follows that

the data points plotted in figure 4 are insensitive to these leading-order lattice effects.

The mass dependence of the pseudo-scalar decay constant, on the other hand, is a

second-order effect in chiral perturbation theory. At this order, only some of the O(a)

lattice corrections can be compensated by a renormalization of the parameters in the chiral

lagrangian, and an accidental O(a) improvement is therefore not expected in this case.
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